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Abstract. Soft hadron production is described as a two-step process, where the interaction of the partonic
constituents of the colliding hadrons leads to the production of intermediate subsystems (fireballs), which
decay subsequently into hadrons. The weights of the various final states are derived from the corresponding
phase-space factors modified by empirical transition elements. The results compare well with data at
energies between particle production thresholds and ISR energies. Special emphasis is put on correlation
data, which offer the opportunity to shed some light on the question whether particle production proceeds
via fireballs or strings.

1 Introduction

QCD is assumed to be the theory of the strong interaction.
Soft hadron production, however, is a nonperturbative
process which at present cannot be calculated by QCD.
Thus, the understanding of soft hadron production is still
based on phenomenological approaches like, e.g., the dual
parton (DPM) [1], the VENUS [2] or the PYTHIA-LUND
[3–6] models. Within these approaches hadrons are con-
sidered as composite objects consisting of partons (quarks
and gluons) the interaction of which is assumed to proceed
in two steps. In a first step excited subsystems, usually
called strings, are produced which decay afterwards into
stable particles and resonances.

Ingredients of these models are structure functions,
parton-parton cross sections and fragmentation functions.
The structure functions of the interacting hadrons con-
tain the information about the momentum distribution of
partons. From the cross sections for parton-parton inter-
actions the number of strings produced in a single hadron-
hadron scattering can be deduced, and fragmentation
functions describe the decay of strings into hadrons. These
approaches make maximal use of the information available
from lepton-hadron and lepton-lepton interactions as well
as from general properties of the scattering amplitude like
unitarity and analyticity.

On the other hand the first attempts to understand
multiple hadron production in hadronic interactions were
based on statistical considerations and the observation of
excited intermediate subsystems called fireballs (FB) (see
the reviews [7–9]). A modern version of a thermodynami-
cal approach can be found, e.g., in [10].

The Rossendorf collision (ROC) model [11–17] is basi-
cally a statistical approach in deriving the relative contri-
butions of the various final channels by calculating their
statistical weights from the phase-space factors, which are,
however, strongly modified by empirical transition matrix

elements. It aims at describing soft hadron production in
the energy region between particle production thresholds
and ISR energies. For this purpose the basic ingredients
of hadron production models are reformulated in such a
way that they are applicable at low energies as well. The
ROC model is built as a minimal approach in the sense
that the number of parameters is restricted to the mini-
mum necessary to well reproduce the main features of the
available data. Special emphasis is put on the considera-
tion of short-range correlations, because the FB concept
yields a natural explanation of the observed phenomena.

The present paper is organized as follows. In Sect. 2 the
basic features of the ROC model are explained. Section 3
contains a comparison of selected experimental data with
model calculations. In order to show differences between
string and FB approaches with regard to correlation data
the ROC model is contrasted with the PYTHIA-LUND
model [6]. By means of a special version of the ROCmodel,
where FBs are degenerated into single hadrons, the im-
portance of FBs for the description of correlation data is
demonstrated. Conclusions are summarized in Sect. 4.

2 The model

The basic idea of a statistical approach consists in the as-
sumption that the probabilities of formation of the various
final states are proportional to their statistical weights.
This idea was implemented by Fermi [18] fifty years ago,
but his model turned out to be applicable only at rela-
tively low energies. At higher energies it is no longer a
good approximation to assume that the whole initial en-
ergy is randomly distributed among the final particles.
Particles with high transverse momentum, e.g., are pro-
duced with extremely low probability indicating that the
final states are dynamically linked with the initial state.
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Fig. 1. Phase-space decomposition of a two-step process. N
FBs with masses MI(I = 1 . . . N) are produced in the inter-
action of two hadrons a and b with four-momenta pa and pb.
The FBs decay in the second step, where the I-th FB disin-
tegrates into nI primary particles with

∑N
I=1 nI = n. Reso-

nances among the primary particles decay afterwards into sta-
ble hadrons. A possible decay chain is shown

In contrast to this early attempt the ROC model is
based on the following modified statistical approach. In-
stead of calculating the statistical weights from the whole
phase-space the dynamics of the interaction is imple-
mented in form of empirical functions which either sup-
press certain regions of the phase-space or impose addi-
tional non-statistical weights. We define a channel α by the
number n, masses mi and quantum numbers of the final
particles. The relative probability of populating a chan-
nel α is calculated as the product of the Lorentz-invariant
phase-space factor dLn(s;α) with the square of an empir-
ical matrix element A2, which describes the dynamics of
the interaction process. Here, s = p2 denotes the square of
the total energy with p being the total four-momentum.
The phase-space factor is defined as the integral over the
momenta of the final particles with energy and momentum
conservation taken into account,

dLn(s;α) = dLn(s;m1, . . . ,mn)

=
n∏

i=1

d3pi

2ei
δ4

(
p−

n∑
i=1

pi

)
, (1)

where the four-momentum of the i-th particle is denoted
by pi = (ei,pi) with p2i = m2

i . For numerical calculations
the δ function in (1) is removed by introducing a new set
of 3n−4 variables to replace the 3n three-momentum com-
ponents. It is reasonable to choose a set of variables, which
reflects the underlying physical picture of the interaction
process. In Fig. 1 the reaction

a+ b → FB1 + . . .+ FBN → h1 + . . .+ hn

between hadrons a and b resulting in the production of n
particles is schematically depicted. First, 2 ≤ N ≤ n in-
termediate particle groups called FBs are produced, which
decay into so-called primary particles. The primary par-
ticles define the channels for which the weights (3) are

calculated. Among them are resonances, which decay sub-
sequently into stable hadrons. The phase-space factor cor-
responding to the diagram of Fig. 1 can be calculated ac-
cording to [19]

dLn (s;αN ) =

[
N∏

I=1

dM2
ILnI

(MI ;αI)

]

dLN (s;M1, . . . ,MN ) (2)

with the invariant masses of the FBs equal to MI =√
P 2

I =
√
(
∑nI

i=1 pi)
2 and the final channel defined as the

vector αN = (α1, . . . , αN ) of the decay channels of the in-
dividual FBs. The probability of populating the channel
αN is given by

dW (s;αN ) ∝ dLn(s;αN )A2 . (3)

Here, the square of the matrix element A2 contains the
dynamical input and is split into factors

A2 = A2
iA

2
qsA

2
exA

2
tA

2
lA

2
st ,

which describe the interaction A2
i resulting in the pro-

duction of N FBs, the production of hadrons A2
qs via the

creation of quark-anti-quark (qq̄) pairs, the invariant-mass
distribution of the FBs A2

ex, the transverse A
2
t and longitu-

dinal A2
l momentum distribution of the FBs, and, finally,

some additional factors A2
st necessary for the calculation of

the statistical weights. In the following subsections these
factors will be discussed in more detail.

2.1 The interaction A2
i

In models like DPM [1] or VENUS [2] the colliding hadrons
are considered as extended and composite objects con-
sisting of an indefinite number of partons, the interac-
tion of which is assumed to proceed via color exchange.
If, e.g., the color exchange between the valence quarks of
two baryons takes place, then two strings are produced.
Each of them consists of the remaining diquark and the
valence quark removed from the other baryon. Since more
complicated exchanges are possible and the collision may
proceed at different impact parameters a varying number
of strings is produced. The corresponding probabilities are
derived from Gribov-Regge theory [20] in the limit of high
energies in combination with the use of profile functions
for integrating over the impact parameter. PYTHIA [6]
describes low-pt events on the basis of the multiple inter-
action model of [5], which extends a high-pt picture down
into the low-pt region by regularizing the pt scale. The
number of (independent) parton-parton collisions in one
event depends on the impact parameter and on the as-
sumed matter distribution inside the interacting hadrons.

In the ROC model, non-statistical weights A2
i (N) for

producing a definite number N of FBs are introduced.
This is a phenomenological parameterization of the con-
tributions from the different color exchange diagrams and
of the integral over the impact parameter, which we apply
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also at low energies. Such a dynamical input is necessary,
because the phase-space factor alone tends to overestimate
the number of FBs simply due to the fact that the number
of states increases the more FBs are produced. A thermo-
dynamical approach using a chemical potential as the only
parameter to regulate the number of FBs turned out to
be not flexible enough. Therefore, the negative binomial
distribution is applied where we have two free parameters
v and q

A2
i (N ; q, v) =

(−v
N

)
(−q)N (1 − q)v. (4)

In the calculations we use the mean N̄ and the ratio of
the variance to the mean D = σ2/N̄ as parameters from
which q = (D − 1)/D and v = N̄/(D − 1) follow. By this
means, the whole complicated interaction scenario is de-
scribed by altogether two parameters in conjunction with
the corresponding phase-space factors.

2.2 Quark statistics A2
qs

The factor A2
qs stands symbolically for the algorithm ap-

plied to sample the possible final states. At first the va-
lence quarks of the interacting hadrons are redistributed
among the FBs and then the final hadrons are produced
via the creation of new qq̄ pairs. All internal quantum
numbers are conserved automatically by this procedure.

The complicated details of color exchange diagrams
and string drawings are replaced by statistical consider-
ations. For describing the interaction process the notion
of quark removal is borrowed from [2]. It is assumed that
the multiple interaction of the partonic constituents of
the incoming hadrons leads to the creation of N FBs.
Color exchange between the constituents results in the
removal of the involved quarks and gluons from the in-
coming hadrons. Removed quarks are found in any of the
other FBs with equal probability. The remaining partons
of the interacting hadrons form the two leading FBs, the
scattered partons the N − 2 central FBs. In a next step
qq̄ pairs are produced and randomly (the q’s and q̄’s inde-
pendently) distributed between the FBs such that each FB
becomes color neutral and contains the minimal number of
q’s and q̄’s necessary for building at least one hadron (me-
son or baryon). This procedure is the equivalent for the
sum over the possible color exchange diagrams with the
restriction that the removal of two or three valence quarks
or of a single sea quark is neglected. Only the removal of
one valence quark with probability Wv is considered. The
remaining probability 1 − Wv is understood as gluon or
quark-pair removal. As equivalent to string fragmentation
each FB is then filled separately with an arbitrary num-
ber nqI of additional qq̄ pairs where nqI ≥ 0. Up, down,
strange and charm quarks are produced in the ratios

u : d : s : c = 1 : 1 : λs : λc (5)

with λs and λc being suppression factors due to the heavier
masses of the strange and charm quarks. The creation

of top quarks can be neglected in the considered energy
range.

The final hadrons are built up in each FB indepen-
dently according to the rules of quark statistics [21] by
randomly selecting sequences of q’s and q̄’s. A qq̄ gives
a meson, while baryons or antibaryons are formed from
qqq or q̄q̄q̄. From a given sequence of quarks the different
hadrons are formed according to the tables of the particle
data group [22]. All baryons marked in the tables with
three or four stars, the meson nonets built from u, d and
s quarks with angular momenta zero and one (1S0, 3S1,
1P1, 3P0, 3P1, 3P2) as well as all charmed hadrons are
taken into account. An empirical probability distribution

Wh(mh) ∝ exp (−mh/Θh) (6)

with an adjustable parameter Θh is used to suppress the
formation of the heavier hadrons of massmh. During event
generation the current masses of resonances are sampled
according to a probability distribution consisting of the
product of a relativistic Breit-Wigner distribution, the
phase-space factor of the decay products and the above
suppression factor Wh(mh). The decay of resonances into
the various channels proceeds either according to known
probabilities or in accordance with the statistical weights
of the possible final states in case of unknown decay prob-
abilities.

The described algorithm together with the parame-
ters λs, λc and Θh is the equivalent of the usually much
larger number of parameters describing the fragmentation
of strings.

It should be stressed that the ROC model has no pa-
rameter fixing the probability of diffractive processes. A
diffractive process is usually assumed to proceed via the
exchange of a Pomeron, a fictitious particle which does
not affect the quantum numbers of the involved particles.
In the string models [1,2] diffractive scattering is treated
as a special process whose probability is determined by a
free parameter adapted to data. In the ROC model diffrac-
tive scattering is one of the possible final channels, because
there is a certain probability that one or even both leading
FBs are identical with the initial protons. This happens
if the valence quark content of the considered FB remains
unchanged, if no additional qq̄ pairs are produced, and if
a proton, and not a resonance, is built from the available
quarks uud in the recombination phase.

2.3 Mass distribution of FBs A2
ex

Until now we have explained how the hadrons forming the
final state are sampled. In a next step the integral over
the invariant masses of the FBs MI [see (2)] is performed.
Again phase-space alone produces too large FB masses
because of their corresponding large numbers of states.
To restrict the invariant masses the FBs are assumed to
be characterized by a temperature Θ. As matrix element
squared the function

A2
ex =

N∏
I=1

(MI/Θ)K1(MI/Θ) (7)
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with the asymptotic behavior

(MI/Θ)K1(MI/Θ) −→
MI/Θ→∞

√
MI/Θ exp(−MI/Θ)

(MI/Θ)K1(MI/Θ) −→
MI/Θ→0 1

is used. The expression (MI/Θ)K1(MI/Θ) is the kernel
of the so-called K-transformation (see [19]) used to trans-
form a micro-canonical phase-space distribution depend-
ing on the total energy MI of the I-th FB into a canoni-
cal one, which is characterized by a temperature Θ. In (7)
K1 stands for the modified Bessel function. For increas-
ing invariant masses MI the function (MI/Θ)K1(MI/Θ)
strongly decreases, while the phase-space factor LnI

(MI)
of the I-th FB becomes larger. Their product has a max-
imum at a value of MI determined by the parameter Θ,
which thus fixes the average internal excitation energy of
the I-th FB. Since FBs consist of only a few particles, we
are far from the thermodynamical limit. Therefore, the
momenta of the hadrons are calculated from the decay of
the FBs according to phase-space and not from macro-
canonical distributions.

2.4 Longitudinal phase-space of FBs A2
t and A2

l

FBs are proposed to emerge from the interaction of par-
tons, whose momenta inside fast moving hadrons are
mainly longitudinal. Due to the finite size of hadrons and
the uncertainty principle a small transverse component is
present too. This is taken into account by damping large
transverse momenta of the FBs using a linear exponential
distribution

A2
t =

N∏
I=1

exp(−γPt,I) (8)

with the mean P̄t = 2/γ. The parameter γ used here can
be directly compared with the analogous parameter em-
ployed in string models [1,2]. There, the transverse mo-
menta of the partons, which form the ends of the strings,
are restricted, here, we constrain the transverse momenta
of the FBs directly.

The longitudinal momentum distribution of the two
leading FBs is weighted by

A2
l = (X1X2)β (9)

with the scaling variables

X1 = (E1 + Pz,1)/
√
s and X2 = (E2 − Pz,2)/

√
s .

Here, it is assumed that FB 1 is the remnant of the in-
coming hadron a moving in the positive z-direction prior
to the interaction, while FB 2 stems from hadron b mov-
ing in the opposite direction. On the average the leading
FBs carry the largest part of the longitudinal momenta as
a consequence of the weighting (9). This forces the other
FBs to have accordingly less longitudinal momenta. In this
manner the factor A2

l is the equivalent of the structure
functions used in refs. [1,2].

The method of calculating the longitudinal phase-
space of N FBs is taken from [23] with appropriate mod-
ifications due to the presence of A2

l .

2.5 Statistics A2
st

In conclusion, all factors still necessary for a correct count-
ing of the final states are collected in the term

A2
st(αN ) =




N∏
I=1

g(αI)

(
V

(2π)3

)nI−1

[
nI∏
i=1

(2σi + 1)2mi

]}(
V

(2π)3

)N−1

. (10)

It contains the spin degeneracy factors (2σi + 1), the vol-
ume V in which the particles are produced with V =
4πR3/3 determined by the radius parameter R. The quan-

tity g(αI) =
(∏

β nβ !
)−1

is the degeneracy factor for
groups of nβ identical particles in the final state of the
I-th FB and prevents multiple counting of identical states.

2.6 Differential cross section

Summarizing the above considerations we define the num-
ber of states in the decay channel αI of one FB

dZI(αI) = g(αI)
(

V

(2π)3

)nI−1
{

nI∏
i=1

(2σi + 1)2mi

}

dMI

(
MI

Θ

)
K1

(
MI

Θ

)
dLnI

(MI ;αI) (11)

and the analogous number for the set of FB states

dZN (s) =
(

V

(2π)3

)N−1
{

N∏
I=1

2MI exp(−γPt,I)A2
i (N)

}

(X1X2)βdLN (s;M1, . . . ,MN ) . (12)

From (11) and (12) a compact expression for the proba-
bility of populating the channel αN = (α1, . . . , αN ) [see
(3)] can be derived

dW (s;αN ) =

{
N∏

I=1

dZI(αI)

}
dZN (s) . (13)

The corresponding cross section is written as

dσ(s) = σin(s)
dW (s;αN )∑

N

∑
αN

∫
dW (s;αN )

, (14)

where the inelastic cross section σin(s) of the considered
reaction serves as normalization. Any physical quantity of
interest can be derived from (14) by summing the contri-
butions from all channels and integrating over the unob-
served variables
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Fig. 2a,b. The calculated FB distribution dσ/dN , (15), (dots
in a) and the measured [24] and calculated multiplicity distri-
bution dσ/dn of charged particles n (dots and histogram re-
spectively in b) from pp interactions at

√
s = 63GeV. In a

the dependence of the matrix element A2
i (N) (line) and of the

FB distribution without A2
i (N) (histogram) are depicted sep-

arately (these two curves are arbitrarily normalized)

2.7 Adjusting parameters

The parameters introduced in the previous subsections de-
termine definite features of the production process. So the
radius parameter is responsible for the multiplicity n of
final particles. In (10) the factor V n−1 appears implying
R3(n−1), and increasing R in turn means that states with
large number n of produced particles get higher weights.
The temperature Θ and the radius R determine the mean
invariant mass of the FBs, Θ via the excitation energy, R
via the number of particles in the FB. Abundances of dif-
ferent hadron species are fixed by the probabilities λs and
λc for the creation of the different quark flavors. The pa-
rameter Θh in (6) influences the selection of hadrons con-
sisting of the same valence quarks. Finally, the momenta
of the primary hadrons are composed from the superpo-
sition of the FB momenta, determined by β and γ, with
the relative velocities of hadrons in the rest frames of the
FBs, influenced by Θ. There are correlations between the
parameters, and several parameter sets have been found
giving similar results.

In searching for a suited set of parameters we start
at the highest energy

√
s = 63GeV with a guess for all

parameters except N̄ and D, which are responsible for
the number of produced FBs [see (4)]. These parameters
are varied until the multiplicity distribution of charged
particles is reasonably reproduced.

In Fig. 2 the influence of the factor A2
i (N) on the FB

distribution

dσ(s)
dN

= σin(s)

∑
αN

∫
dW (s;αN )∑

N

∑
αN

∫
dW (s;αN )

(15)

is demonstrated. Without the factor A2
i (N) the cross sec-

tion for producing N FBs (the histogram in Fig. 2a)
reaches its maximum at values much too high for repro-
ducing the multiplicity distribution of charged particles.

10
-3

1

10
3

10
3

Fig. 3. Cross section of the reactions pp → n∆++ and
pp → ∆0∆++ as a function of the laboratory momentum.
Experimental data (dots) from [25] are compared with ROC
model results (solid lines). The dashed curves are calculated
with the probability for valence quark removal Wv = 1

By combining the increasing phase-space factor with the
decreasing function A2

i (N) (the line in Fig. 2a) a FB dis-
tribution is produced which reproduces the distribution
of charged particles (Fig. 2b). The similarity of FB and
particle multiplicity distribution is due to the fact that on
the average each FB emits the same number of particles.

In order to describe data also at lower energies the pa-
rameters Wv, γ, β and R were made energy dependent,
while the other ones are kept constant. For the prob-
ability Wv of valence quark removal the energy depen-
dence follows from the consideration of the binary reac-
tions pp → n∆++ and pp → ∆0∆++ for which data in a
wide energy region are available (see Fig. 3). In the present
approach contributions to these reactions come alone from
events with N = 2 FBs. A removed quark from one pro-
ton belongs, after the interaction, to the other one and
vice versa. For the reaction to proceed an exchange of an
u with a d quark must happen according to

p+ p → uud+ uud → udd+ uuu → n+∆++ .

The calculated cross sections become zero for Wv = 0,
while for Wv = 1 the data are well reproduced at low, but
overestimated by orders of magnitude at high energies (see
the dashed curves in Fig. 3). Therefore, the function

1 −Wv = Ek/(W1 + Ek) (16)

with the excess energy Ek =
√
s−2mp and one parameter

W1 is used to describe the energy dependence. It provides
a smooth transition between the two extremes, Wv = 1
for excess energy Ek = 0 and Wv → 0 for large excess
energies. In this way the data are reproduced quite well
with the correspondingly adjusted parameter W1 (see Ta-
ble 1). Such an energy dependence is in agreement with the
parton picture of hadrons. Roughly speaking the number
of partons increases with energy and, consequently, the
probability for a valence quark being involved in the color
exchange diminishes.
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Table 1. The parameter set used for the calculations. ME
stands for the matrix element squared

ME Parameter Parameter Equation

A2
i N̄=1.8 D=1.4 4

A2
qs λs=0.15 λc=0.05 5

Θh = 250MeV W1 = 3GeV 6,16
A2

exA
2
st Θ = 300MeV R=1.2 . . . 1.29 fm 7,10

A2
t γ0 = 3.8 (GeV/c)−1 γ1 = 1GeV 8,17

A2
l β0 = 2 β1 = 1GeV 9,18

The energy dependence of the parameters γ and β [see
(8), (9)] cannot be determined in such a clean way. Still the
best indication comes from the proton spectra at different
energies. In a diffractive event at least one of the lead-
ing FBs is identical with the corresponding initial hadron.
The additional folding with the momentum distribution
from the FB decay is absent and the transverse momen-
tum dependence of the diffractive peak (see Figs. 9 and 10
in Sect. 3.2) is directly governed by γ and β. A reasonable
description at the different energies is achieved using

γ = γ0
√
s/(γ1 +

√
s) (17)

and
β = β0

√
s/(β1 +

√
s) . (18)

The parameter R is then adjusted to reproduce the
mean multiplicity of charged particles 〈nch〉 at the differ-
ent energies. Below incident momenta of 100GeV/c the
constant value of R = 1.29 fm is used, because 〈nch〉 ceases
to be sensitive to the value of R. With increasing ener-
gies the value of R decreases smoothly towards 1.2 fm. All
ROC model results in this paper are calculated with the
parameter set summarized in Table 1.

3 Comparison with data

The ROC model is implemented as a Monte-Carlo gen-
erator which samples complete events from which nearly
all kinds of measurable quantities can be deduced and
compared with experimental results. The overall agree-
ment between data and ROC calculations is quite good in
the whole considered energy range between about

√
s ≈

2.2GeV and the highest ISR energy of
√
s = 63GeV. In

the following a few selected data sets concerning hadron
multiplicities and the dependencies of differential cross
sections on longitudinal and transverse variables are pre-
sented. Then correlations are discussed more thoroughly,
because they are sensitive to differences between string
and FB models.

3.1 Multiplicities

Hadron abundances are determined by the strange and
charm suppression factors λs and λc, respectively, and the

10
-4

10
-1

10 2

10
-4

10
-2

1 10

Fig. 4. Hadron multiplicities for pp collisions at
√

s =
27.5GeV. The experimental average multiplicities [25–27] are
plotted versus the calculated ones. The dashed line indicates
coincidence between data and calculations. Well reproduced
data tend to lie near this line. Λ∗ stands for Λ(1520)

hadron temperature Θh. There is no parameter which gov-
erns the production of baryons directly. Instead, the algo-
rithm for building hadrons from quarks is responsible for
baryon production. The more quarks are available in the
FB considered, the more probable it is to select at random
a sequence of three q’s (or q̄’s) from which a baryon (or
antibaryon) can be formed. Since the FBs become bigger
with increasing temperature Θ and radius R, these are
the parameters, which determine how many baryons are
produced. A rather complete data set of hadron multi-
plicities for pp collisions at

√
s = 27.5GeV is compared

with model calculations in Fig. 4. The agreement is quite
impressive except for the Λ(1520) where the deviation is
rather large. An obvious reason for this discrepancy has
not been found.

Figure 4 should be compared with the result from the
thermodynamical model of Becattini (see Fig. 5 in [10]).
There, three parameters, temperature, volume and sup-
pression factor λs are fitted, which have similar meanings
as in our study, although the parameter values differ con-
siderably from those used here. Nevertheless, the achieved
accuracy of the description is comparable. We have, con-
trary to [10], charmed particles included in Fig. 4, and the
suppression factor λc is adjusted to reproduce these data
points.

In Fig. 5 the energy dependence of mean multiplici-
ties of different particle species is plotted. The mean mul-
tiplicity of charged particles 〈nch〉 is mainly affected by
the temperature Θ and the radius R. In order to repro-
duce 〈nch〉 the radius R is adjusted at each energy. The
adapted values of R change by less than 10% in the con-
sidered energy region. Since charged particles are mainly
pions the energy dependences of the number of charged
particles and of pions are similar. The slightly larger val-
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Fig. 5. The energy dependence of mean multiplicities of
charged particles (ch), π+, π−, K+, K−, p and p̄ for pp scatter-
ing. Full and dotted lines are fits to the data [28], the symbols
are ROC results

ues of π+ compared to π− arise from charge conservation.
Strangeness suppression causes a large gap between pi-
ons and kaons. It should be noted that, e.g., the VENUS
model reproduces this gap (see Fig. 10.2 of [2]) with a
suppression u : d : s = 0.43 : 0.43 : 0.14 differing by
a factor of nearly two from the value used here, namely
u : d : s = 1 : 1 : 0.15. A possible explanation for this
difference might be the mass factor in (10). Strange par-
ticles have heavier masses what gives them a larger rel-
ative weight. On the other hand, the phase-space factor
becomes smaller the heavier the produced particles are.
Hence, a direct comparison of the suppression factors as
used in string fragmentation and in the present approach
seems to be difficult. The production of antiprotons is sup-
pressed by about two orders of magnitude, because only
FBs consisting of at least three quark pairs have a certain
probability to create a baryon-antibaryon pair. The direct
influence of the phase-space factor becomes especially im-
portant in the threshold region where the multiplicities are
small. The different curves for pions, kaons and antipro-
tons are well reproduced due to the phase-space factor,
which strongly decreases with diminishing kinetic energy
still available after particle production.

After having reproduced the mean multiplicities of
charged particles by adapting the radius parameter we
consider the energy dependence of topological cross sec-
tions in Fig. 6 without any further parameter adjustment.
The typical behavior of the cross sections with a weak
maximum and subsequent slow decrease for low and a con-
tinuous increase in the considered energy region for high
multiplicities is well reproduced by our model.

3.2 Differential cross sections

In a next step the distribution of particles in phase-space
is considered. We start with the charged particle density
for various intervals of the observed multiplicity shown in
Fig. 7. Charged particles were measured [29] in the pseudo-
rapidity region |η| ≤ 4. In the calculations the geometrical
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Fig. 6. The topological cross sections σn for the production of
n charged particles as a function of the laboratory momentum.
Dots are data [25], full lines ROC results

Fig. 7. Normalized charged particle densities in various inter-
vals of the multiplicity n indicated on the right ordinate. Dots
are data [29], histograms represent ROC results. Data and cal-
culations are corrected for acceptance. For the data n is the
observed multiplicity, while for the calculations n is the (true)
multiplicity in the pseudo-rapidity range η ≤ 4

acceptance of the apparatus has been taken into account
according to the curve given in Fig. 2 of [29]. The differ-
ences in the multiplicities observed in the experiment and
the multiplicities in the calculations are, however, not cor-
rected. Nevertheless, the characteristic features of the data
are excellently reproduced. We see the two bump struc-
ture at low and the shrinkage of the distributions with
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Fig. 8. Invariant cross sections as a function of the transverse
momentum at cm. rapidities y=0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2
and 1.4 from bottom to top. Symbols are data [30], histograms
ROC results. The spectra are multiplied by 100 at y=0, 101 at
y=0.2 . . . 107 at y=1.4

increasing multiplicities as well as their broadening with
increasing energy. In the ROC calculations this behavior
comes from the decay of the leading FBs situated near
the projectile and the target rapidity at low multiplici-
ties, while with increasing multiplicity the contributions
from the increasing number of FBs dominate and due to
momentum conservation the mean rapidity of the leading
FBs change to lower values too.

The same data were described by [35] with a simple
cluster model and by [36] in the framework of the dual
parton model [1]. Both attempts failed in reproducing the
two-bump structure at low multiplicities, obviously due
to the absence of a diffractive component in these ap-
proaches.

In Fig. 8 transverse momentum distributions for vari-
ous particles are compared with experimental data. Both
data and model results show roughly an exponential be-
havior. The calculated spectra result from a convolution
of the transverse momenta of the FBs with the internal
momentum distributions of the primary particles in the
FBs and the momentum distributions of secondaries in
which primary resonances decay. At the highest momenta
an underestimation of the measured cross section is ob-
served while the overall agreement is quite satisfactory
for all particle types.

Proton spectra as a function of a longitudinal variable
like Feynman’s variable xF are of special interest because
of the peak from diffractive scattering for xF → 1. As
already mentioned there is no special parameter which
forces this channel to have a definite probability. There-
fore, the good overall reproduction of the proton spec-
tra in Fig. 9 is quite remarkable, although the height of
the peak is underestimated by the calculations. A better

1
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0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Fig. 9. Invariant differential cross sections as a function of
Feynman’s variable xF at various values of p2

t as indicated in
the figure. Symbols are data [31], histograms ROC results. The
spectra on the right hand side are multiplied by factors of 5
and 3, respectively

agreement might be obtained by giving the leading FBs a
lower temperature than the central ones in analogy to the
spectator-participant picture of hadron-nucleus reactions.
This ansatz will be left to forthcoming considerations.

Also at lower energies excellent agreement between
data and ROC model calculations is achieved, as demon-
strated in Fig. 10. There the dependence of invariant dif-
ferential cross sections on Feynman’s variable xF for the
production of various hadron species at a laboratory mo-
mentum of 100GeV/c is depicted. While the proton spec-
tra show pronounced diffractive peaks for xF → 1, the
cross sections for the other particle types strongly decrease
at large xF . The squared longitudinal matrix element A2

l
with the parameter β in (9) governs this behavior. It keeps
the leading FBs at large |xF | and the particles from the
central FBs at small |xF |. The smaller β is chosen the
larger the cross sections become for mesons and p̄’s for
xF → 1.

In stepping down the energy scale let us give a further
example in Fig. 11. Shown are the invariant cross sections
for three types of baryons as a function of x = 2pl/

√
s (pl

being the longitudinal momentum) and for charged pions
as a function of the rapidity. The main features of the data
are well reproduced, although again the diffractive peaks
in the proton spectra are underestimated. In case of the
neutron spectra there are deviations especially at higher
values of pt, while the Λ spectra are quite well described.
Also the rapidity plateau at small and its shortening with
increasing transverse momenta in the pion spectra is well
reproduced.

Finally, we verify the applicability of the ROC model
at energies below the production threshold for strange par-
ticles and show the kinetic energy spectra of π+ mesons
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Fig. 10. Invariant differential cross section for the production
of p, p̄, π+, π−, K+ and K− as a function of Feynman’s vari-
able xF . The symbols denote the data [32] at various values
of the transverse momentum pt, histograms are ROC results.
Data and calculations are multiplied by the factors given in
the legend

at an incidence energy of 740MeV in Fig. 12. The peak at
the high-energy end of the calculated spectra comes from
the binary reaction pp → dπ+. Due to insufficient energy
resolution this peak is not seen in the measured spectra.
The data are well reproduced in forward and backward
direction while deviations become noticeable at sidewards
angles. At low energy the parameter values discussed in
Sect. 2 are no longer important. Instead, the details of
the treatment of resonance decays play an important role.
Most of the π+ meson production proceeds via the cre-
ation of ∆ resonances. The spectra are therefore strongly
influenced by the mass distributions of the decayed res-
onances. In the present version of the ROC model the
current masses of all types of resonances are sampled by
using a constant width of the Breit-Wigner distribution.
This might be the reason for the observed deviations.

3.3 Correlations

The data considered so far can obviously be quite well re-
produced by both string and FB models. In this subsection
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Fig. 11. Invariant differential cross sections for the production
of protons, neutrons and Λ’s as a function of x = 2pl/

√
s (up-

per part) and of π+ and π− mesons as a function of the rapidity
y (lower part). The symbols denote the data [33,34] at values
of the transverse momentum pt between 0.2 and 1.0GeV/c,
histograms are ROC results
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Fig. 12. Differential cross section as a function of the kinetic
energy for π+ production at laboratory angles between 15◦ and
150◦. Dots are data [37], histograms ROC results
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Fig. 13. The inclusive two-particle correlation function
C(y1, y2) from 200GeV/c pp interactions as a function of
y2 − y1 with fixed |y1| ≤ 0.25 for different charge states of
the two observed particles indicated by Ccc, C−− and C+−.
Dots are data [44], histograms ROC model, full lines PYTHIA
and dashed lines ROCS results

the question is discussed whether rapidity correlations are
more sensitive with respect to their interpretation in terms
of strings or FBs. The existence of short-range correlations
is experimentally well established and many papers deal
with the various aspects of correlations (see, e.g., [38–43]).

When looking for rapidity correlations one usually de-
fines a single-particle

ρ1(y) = σ−1
in dσ/dy

and a two-particle rapidity density

ρ2(y1, y2) = σ−1
in d2σ/dy1dy2.

The latter is proportional to the probability of finding
one particle at y1 and a second one at y2. In order to
see whether the joint production of a pair of particles at
(y1, y2) differs from an independent production of the two
particles the two-particle correlation function

C(y1, y2) = ρ2(y1, y2) − ρ1(y1)ρ1(y2) (19)

is introduced as the difference between the two-particle
density and the product of two single-particle densities.
Non-vanishing values of C(y1, y2) indicate the presence of
correlations.

In Fig. 13 the measured and calculated two-particle
correlation functions for different charge combinations of
the two observed particles are compared. The pronounced
peaks in the measured spectra are satisfactorily repro-
duced by the ROC model calculations (histograms). How-
ever, this fact alone is not yet a proof of the existence of
FBs for at least two reasons. First, the measurements are
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Fig. 14. Inclusive (n=all) and semi-inclusive two-particle cor-
relations Cn(η1, η2) vs. η2 at fixed η1 = 0 for the observed
multiplicities n indicated in the figure from pp interactions at√

s = 23GeV and 62GeV. At 23GeV the corresponding mean
values of the true multiplicities are 9.1, 14.0 and 21.7, and the
curves are calculated for multiplicities of 8-10, 14 and 18-24,
respectively, while at 62GeV the mean values are 8.1, 18.8
and 30.8, and the curves are calculated for multiplicities of 8,
18-20 and 28-34, respectively. Dots are data [45], histograms
ROC model, full lines PYTHIA and dashed lines ROCS results

inclusive ones and mixing of events with different mul-
tiplicities can cause strong correlations as, e.g., pointed
out in refs. [40,46,47]. Second, the presence of resonances
among the emitted particles also tends to group the ob-
served particles into clusters. That means, the observed
correlation spectra contain always a superposition of ef-
fects from resonances and other possible short-range phe-
nomena.

In order to see whether resonance production alone
can reproduce the observed correlation patterns we carry
out calculations with a special version of the ROC model
(abbreviated by ROCS in the following). All FBs are com-
pelled to degenerate into single hadrons by restricting the
quark content of the FBs to be either qqq or q̄q̄q̄ or qq̄. In
this way all correlations implied by the presence of FBs
are excluded. An additional parameter WB is necessary in
this case fixing the probability of baryon creation relative
to meson production, because the algorithm for the com-
bined building of baryons and mesons from quarks (see
Sect. 2.2) is not applicable here. The value of WB = 0.15
adjusted to reproduce p̄ production is similar to the prob-
ability of diquark creation in string models, where, e.g.,
the default values used in VENUS [2] and PYTHIA [6]
are 0.12 and 0.10, respectively. The ROCS version has
been proven to reasonably reproduce most of the data
discussed in the previous sections with readjusted param-
eters of A2

i [see (4)] and an increased radius parameter R.
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Fig. 15. The same as Fig. 14, but for semi-inclusive two-
particle correlations Cn(η1, η2) vs. η2 at fixed η1 = −0.87

The ROCS results for the correlation are shown in Fig. 13
by the dashed lines, which underestimate the measured
values remarkably. We consider this result as a direct ver-
ification of the presence of short-range phenomena beyond
resonance production.

As a further proof of such additional short-range phe-
nomena calculations with the string model PYTHIA [6]
version 6.115 are carried out using the multiple interaction
approach of [5] with varying impact parameter. The mean
multiplicity of charged particles is reproduced by adjust-
ing the regularization scale p⊥0 (PARP(82)) of the trans-
verse momentum spectrum. A Gaussian is taken for the
matter distribution of the interacting protons, what gives
a reasonable reproduction of the multiplicity distribution
of charged particles at

√
s = 63GeV. All other parameters

are kept at their default values. The results, the full lines in
Fig. 13, underestimate the data too. This finding confirms
again that resonance production alone is insufficient for a
correct reproduction of correlation data. In addition, the
similarity of ROCS and PYTHIA curves shows that the
fragmentation of multiple strings in
PYTHIA can be quite well imitated by creating hadrons
in longitudinal phase-space.

Correlations caused by the mixing of events with differ-
ent multiplicities can be excluded by fixing the multiplic-
ities of the considered events. This type of measurements
will be called semi-inclusive in the following. For the cor-
relation function the same formula (19) holds with the
single and two-particle densities taken from events having
a definite multiplicity. As an example results of Amen-
dolia et al. [45] are presented in Fig. 14 for the reaction
p + p → c1 + c2 + X at two energies with c1, c2 and X
standing for two charged particles and anything, respec-
tively. The inclusive two-particle correlation (on top of
the figure) is compared with semi-inclusive correlations at
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Fig. 16. The same as Fig. 14, but for semi-inclusive two-
particle correlations Cn(η1, η2) vs. η2 at fixed η1 = −1.96

three narrow intervals of the observed multiplicities. The
latter data sets, however, contain events whose true mul-
tiplicities span a much wider interval (see Fig. 5 in [45]).
Lacking the exact knowledge of the detector response we
have selected multiplicity intervals around the mean val-
ues of the true multiplicities [45] in the calculations. Figure
14 shows that the inclusive correlation function is much
broader than the semi-inclusive ones, a feature of the data
which is well reproduced by the ROC calculations. The
semi-inclusive data with their distinctly smaller peaks and
and pronounced dips of both sides of the peaks are well
described too. Alone the peaks in the data for the high-
est multiplicity especially at

√
s = 23GeV are underesti-

mated. The PYTHIA and ROCS curves clearly underesti-
mate inclusive as well as semi-inclusive data. Again they
are in good agreement with each other.

In Fig. 15 the correlation function with one charged
particle fixed outside midrapidity is given. The data are
well reproduced by the ROC model, except for the high-
est multiplicity interval at

√
s = 23GeV. These deviations

become larger if the distance of the fixed particle from
midrapidity is increased (see Fig. 16). The ROCS version
underestimates also in the non-symmetric cases all con-
sidered correlations and agrees with the PYTHIA results
with the exception of the lowest multiplicity interval at√
s = 62GeV. There, the PYTHIA curve is closer to the

experiment than the ROCS result, but still far from a good
reproduction of the data.

To better understand the results shown in Figs. 14–
16 the contributions from different subprocesses are de-
picted in Fig. 17 separately. In PYTHIA diffractive and
nondiffractive processes are treated in different ways,
while in the ROC model a diffractive process is simply
one of the possible final channels without any special as-
sumptions. Consequently, the ROC results for all subpro-
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Fig. 17. Semi-inclusive two-particle correlations Cn(η1, η2)
vs. η2 at several fixed values of η1 indicated in the figure for
the multiplicity interval n = 10 − 11 at

√
s = 62GeV. The

data [45] (dots) are compared with ROC model (histograms)
and PYTHIA (full lines) results for single- (pp → Xp and
pp → pX), double- (pp → pXp) and nondiffractive (pp → XX)
processes

cesses exhibit the typical correlation pattern. On the other
hand, the PYTHIA results show a large variety of com-
pletely different correlation functions in dependence on
the considered subprocess and on the pseudo-rapidity in-
terval where one of the particles is fixed. In the first row
of Fig. 17 the diffractive excitation of the projectile is con-
sidered. We find the target proton after the interaction at
negative rapidities and the excited projectile as a string
in case of PYTHIA and as a number of FBs in case of
ROC calculations mainly at positive rapidities. Values of
the correlation function around zero near the target ra-
pidity indicate that the emission of the target proton is
weakly correlated with the emission of the charged par-
ticles from the excited subsystem(s) (see the symmetric
case η1 = 0). For the diffractive excitation of the target
(the second row) the unchanged target proton is at pos-
itive, the excited subsystems at negative rapidities. The
whole picture is simply reversed in the symmetric case
(η1 = 0), while we get from PYTHIA completely differ-
ent pictures for the non-symmetric measurements with
η1 = −0.87 and η1 = −1.96. The PYTHIA result for
double diffraction (the third row) is of special interest.
Both interaction partners remain unchanged and the ex-
cited subsystem is mainly at central rapidities. The central
string acts like a cluster or FB and the results from ROC
and PYTHIA are similar. The contribution of this special
process is responsible for the somewhat better reproduc-
tion of the data by PYTHIA in the multiplicity interval
n = 10 − 11 at

√
s = 62GeV in Fig. 16. With increasing

multiplicities the diffractive contributions become smaller
and the result is dominated by the nondiffractive compo-
nent. In this case (the fourth row) we have in PYTHIA
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Fig. 18. Number of charged particles nch versus number of
FBs N in ROC model calculations for p+p at

√
s = 23GeV and

62GeV. The size of the boxes is proportional to the calculated
cross section. The full line in the upper part represents the
mean value of charged particles 〈nch〉 and the line in the lower
part the FB size 〈nch〉/N as a function of N

the typical multi-string picture with a clear underestima-
tion of the measured correlation. Altogether we see that
even at fixed multiplicities the contributions from differ-
ent processes may result in distinct diffraction patterns in
a model dependent way.

In spite of the results presented here it should be men-
tioned that in the literature examples for the description
of short-range correlations by string models can be found.
So the dual parton model [1], which has a multi-string
structure similar to PYTHIA, reproduces correlation data
either under certain assumptions for the fragmentation
functions (see, e.g., [48,49]) or as the result of the decay
of minijets and of soft strings with sea quarks at their
ends [50]. Such strings emit hadrons into limited rapidity
regions like clusters.

In order to clarify the origin of the deviations be-
tween ROC calculations and data at high multiplicities
(see Fig. 16) we show the correlation between the num-
ber of FBs and the number of charged particles in Fig. 18.
First of all we observe large fluctuations regarding the FB
size, where FB size is understood as the mean number of
charged particles originating in a FB. At

√
s = 62GeV

it is possible that, e.g., 18 charged particles may be pro-
duced in events with numbers of FBs ranging from 2 up
to 20. The mean number of charged particles (the line
in the upper part of Fig. 18) flattens out for large num-
bers of FBs especially at

√
s = 23GeV. That means that,

although we use constant parameters Θ and R, the FB
size (the histogram in the lower part of Fig. 18) becomes
smaller with increasing number of FBs due to the phase-
space factor, and this influence is at

√
s = 23GeV much

stronger than at 62GeV. Here we see the origin for the
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Fig. 19. Mean number of charged particles emitted into the
backward hemisphere 〈nB〉 as a function of the number of
charged particles emitted into the forward hemisphere nF for
symmetric intervals of the pseudo-rapidity η indicated in the
figure, where f(s) = 0.5 · ln(s ·GeV−2)− 2. Dots are data [35],
histograms ROC model, full lines PYTHIA and dashed lines
ROCS results

discrepancy with the data at high multiplicities. This is
confirmed by a series of calculations with increased pa-
rameter values of R (and accordingly adapted A2

i , (4),
to keep the mean number of charged particles constant).
Due to the larger R the size of the FBs is increased and
a good reproduction of the data at high multiplicities is
possible while the low-multiplicity data are overestimated.
That means, the present version of the ROC model is too
simple with regard to the FB size. The volume V derived
from the parameter R is considered as a measure for the
overlap region of the two colliding hadrons which defines
the spatial region where particle production takes place.
Therefore, it is understandable that a value of V inde-
pendent of the impact parameter is surely an oversimpli-
fication. Since the number of produced FBs is correlated
with the impact parameter (see Sect. 2.1), an increase of
R with increasing number of FBs would be quite a nat-
ural improvement of the model. A dependence of the FB
temperature Θ and of the momentum distribution of FBs
described by β and γ on the number of FBs cannot be
excluded as well. A central collision may produce hotter
FBs with a more isotropic phase-space distribution than
a peripheral one. Such a view is supported by an analysis
[51] of long-range correlations between charged particles
emitted into the forward and backward hemispheres at
much higher energies (

√
s = 0.3−1.8TeV). The E735 col-

laboration came to the conclusion, that the cluster size
may increase as a function not only of

√
s but also of the

particle multiplicity.
An analysis of long-rang correlations in the energy re-

gion considered here has been carried out by Uhlig et al.

[35]. Their results are shown in Fig. 19. The mean number
of charged particles emitted into the backward hemisphere
is plotted as a function of the number of forward emitted
particles. The slope of these curves is a measure for the
strength of the correlation between particles ejected into
the various regions of the hemispheres. Although there
are some systematic deviations at low multiplicities and
at

√
s = 24GeV the overall trend of the data is well de-

scribed by the calculations. We see the strongest corre-
lation for adjacent regions in pseudo-rapidity η while the
strength is smaller if there is a gap between the considered
η intervals. The emission is nearly independent for the re-
gions in the lowest row of Fig. 19, which are outside the
central rapidity plateau. The authors of [35] explain their
results with the correlation between clusters consisting of
about three particles (neutral ones included). In Fig. 19
we see a striking agreement between the results of ROC,
ROCS and PHYTHIA calculations. Obviously, both FB as
well as string models are able to reproduce the observed
long-range correlations in the considered energy region.

4 Conclusions

We have presented the empirical ROC model for soft
hadron production. It is based on the parton picture of
hadrons as well as on statistical and thermodynamical
considerations. Experimental results from pp interactions
in the energy region between particle production thresh-
olds and ISR energies can be well described with a mod-
erate number of parameters which are either constant or
have a smooth energy dependence. A comparison of the
ROC fireball model and the PYTHIA string model with
regard to short-range rapidity correlations seems to favor
the ROC model, although the description of short-range
correlations is possible in string models too. Thus we do
not have a clear answer to the problem of hadron produc-
tion via strings or fireballs. A systematic consideration
of all available data especially those at higher energies is
necessary to come to a decision between the possible sce-
narios: strings, fireballs or something in between.
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